SPRAWOZDANIE KOŃCOWE Z REALIZACJI PROJEKTU BADAWCZEGO

"MODELOWANIE ROZPŁYWU I BADANIE TRANSPORTU ZANIECZYSZCZEŃ W NATURALNYCH ODBIORNIKACH WODNYCH Z WYKORZYSTANIEM IZOTOPÓW STABILNYCH JAKO ZNACZNIKÓW"

PROJEKT NO 3T09D 08726

Wykonawca

Instytut Chemii i Techniki Jądrowej ul. Dorodna 16, 03-195 Warszawa Fax: (0-22) 811-15-32, Tel.: (0-22) 504-10-58

SPIS TREŚCI

1. INFORMACJE OGÓLNE O PROJEKCIE.

- 1.1. Zespół badawczy.
- 1.2. Harmonogram wykonywanych prac w ramach projektu badawczego.

2. STRESZCZENIEPROJEKTU.

3. WPROWADZENIE.

4. ΜΕΤΟΟΥΚΑ ΒΑΟΑŃ.

- 4.1. Oznaczenia stosunków izotopowych ¹⁸O/¹⁶O i D/H próbek wody.
 - 4.1.1. Preparatyka wodoru.
 - 4.1.2. Preparatyka tlenu.
- 4.2. Metoda znacznikowa badania rozpływu zanieczyszczeń w rzekach.
 - 4.2.1. Wybór znacznika, dozowanie, aparatura pomiarowa.
 - 4.2.2. Technika pomiarowa.
- 4.3. Model adwekcyjno dyspersyjny rozpływu zanieczyszczeń w rzekach.

5. OPIS UZYSKANYCH WYNIKÓW.

- 5.1. Badania układu wodnego Narew-Bug-Zalew Zegrzyński
 - 5.1.1 Symulacje numeryczne przepływu wody w Zalewie Zegrzyńskim.
- 5.2. Badania układu wodnego BugoNarew-Wisła
 - 5.2.1. Badania znacznikowe akwenu wodnego BugoNarew Wisła.
 - 5.2.1.1. Pomiar rozpływu wód BugoNarwi w Wiśle

5.2.1.2. Pomiar rozpływu wód Wisły poniżej ujścia BugoNarwi.

5.2.2. Oszacowanie drogi pełnego wymieszania.

6. WNIOSKI.

7. LITERATURA CYTOWANA

8. WYDANE PUBLIKACJE I INNE FORMY UPOWSZECHNIANIA WYNIKÓW.

1. INFORMACJE OGÓLNE O PROJEKCIE

Tytuł projektu:

"MODELOWANIE ROZPŁYWU I BADANIE TRANSPORTU ZANIECZYSZCZEŃ W NATURALNYCH ODBIORNIKACH WODNYCH Z WYKORZYSTANIEM IZOTOPÓW STABILNYCH JAKO ZNACZNIKÓW"

Numer projektu: 3T09D 08726 Numer umowy z Ministrem Nauki i Szkolnictwa Wyższego: PB 1327/T09/2004/26 Termin rozpoczęcia: 23-04-2004 Termin zakończenia: 22-02-2007

Dane kierownika projektu:

dr inż. Jacek Palige ul. Maklakiewicza 13 m 3, 02-642 Warszawa

Instytut Chemii i Techniki Jądrowej ul. Dorodna 16, 03-195 Warszawa

Nazwa jednostki realizującej:

Instytut Chemii i Techniki Jądrowej ul. Dorodna 16, 03-195 Warszawa

Słowa kluczowe: metody znacznikowe, izotopy stabilne, rzeki, zbiorniki wodne, ochrona środowiska

1.1. Zespół badawczy

dr inż. Andrzej Owczarczyk

dr inż. Jacek Palige

dr inż. Andrzej Dobrowolski

mgr inż. Sylwia Ptaszek

mgr inż. Robert Zimnicki

Pracownik pomocniczy

1.2. Harmonogram prac w ramach projektu badawczego.

Lp.	Nazwa zadania badawczego	Termin realizacji (liczba miesięcy od terminu zawarcia umowy)	Koszty planowane poniesione (zł)
1	2	3	4
1	Zbadanie rozpływu wód w systemie Narew, Bug – Zalew Zegrzyński	15 miesięcy	100 000
	1.1. Opracowanie siatki poboru próbek wody w systemie.		
	 1.2. Badania terenowe i pomiary δ¹⁸O i δD w pobranych próbkach 		
2	Zbadanie rozpływu wód w systemie Bugo-Narew – Wisła	15 miesięcy	80 000
	2.2. Opracowanie siatki poboru próbek wody w systemie.		
	2.3. Badania terenowe i pomiary δ^{18} O i δ D w pobranych próbkach		
3	Weryfikacja proponowanych modeli	15 miesięcy	20 000
	matematycznych		
	Opracowanie raportu wykonawczego z		
	wykonania grantu		
		Razem	200 000

2. STRESZCZENIE PROJEKTU

Celem pracy było wykorzystanie naturalnie istniejących różnic składu izotopowego wód ¹⁸O/¹⁶O i D/H do badania procesów transportu i towarzyszących im procesów dyspersji i mieszania wód w układzie dopływ – odbiornik.

W ramach projektu opracowano i sprawdzono w warunkach terenowych metodologię łącznych badań znacznikowych (BZ) i badań stosunków izotopowych wody (BSI) do wyznaczania dynamiki procesów dyspersji zanieczyszczeń i mieszania się wód w układach wodnych takich jak rzeki i przepływowe zbiorniki wodne.

Skład izotopowy wody jest funkcją wielu czynników klimatycznych, geograficznych i geologicznych charakterystycznych dla zlewni danej rzeki. Przeprowadzone pomiary składu izotopowego wód zlewni Bugu, Narwi, BugoNarwi i Wisły wykazały występowanie znaczących różnic w ich składzie izotopowym w szczególności izotopów wodoru D/H. Występujące różnice w składzie izotopowym (SI) wykorzystano jako naturalne znaczniki wody.

Przeprowadzono dwie serie pomiarów terenowych. W serii I badano system hydrologiczny Narew – Bug – Zalew Zegrzyński jako układ rzeka – zbiornik przepływowy. W wybranych przekrojach poprzecznych porównano dane doświadczalne dotyczące stosunków izotopowych SI pobieranych próbek wody i wyliczonych współczynników mieszania wód z danymi uzyskanymi w wyniku modelowania numerycznego rozpływu wody i zanieczyszczeń w badanym akwenie. W pomiarach tych nie uzyskano zgody Sanepidu na przeprowadzenie eksperymentów znacznikowych na Zalewie Zegrzyńskim. Uzyskano dobrą zgodność wyników doświadczalnych z wynikami obliczeń modelowych.

W serii II badano system hydrologiczny BugoNarew – Wisła (w rejonie Modlina) jako układ dopływ – rzeka główna. W wybranych przekrojach poprzecznych Wisły porównywano dane doświadczalne dotyczące SI pobieranych próbek wody i wyliczonych stąd współczynników mieszania wód z danymi doświadczalnymi uzyskanymi w eksperymencie znacznikowym, w którym jako znacznik wody wykorzystano Rodaminę B. Z danych uzyskanych w badaniach znacznikowych BZ wyznaczono współczynniki dyspersji wzdłużnej i poprzecznej wód opisujących zdolności mieszania się wód w danym akwenie.

Do modelowania układu wykorzystano model dwuwymiarowy (2D) adwekcyjno – dyspersyjny opisujący przepływ wody w wybranym odcinku rzeki Wisły.

6

Stwierdzono zgodność danych doświadczalnych uzyskanych w badaniach składu izotopowego (SI) i znacznikowych z danymi uzyskanymi w wyniku modelowania numerycznego badanego akwenu.

3. WPROWADZENIE.

Wody powierzchniowe są w większości przypadków głównym odbiornikiem ciekłych zanieczyszczeń zrzucanych przez przemysł i aglomeracje miejskie. Równocześnie wody te są w Polsce podstawowym źródłem zaopatrywania ludności i gospodarki krajowej co powoduje konieczność ciągłego monitoringu procesów zachodzących w odbiornikach wodnych.

Zanieczyszczenia wprowadzane do układu wodnego w postaci ciekłej podlegają biodegradacji oraz dyspersji i rozcieńczaniu podczas ich transportu z wodami odbiornika. Wyrządzają one określone szkody ekologiczne, które w skrajnym przypadku mogą doprowadzić do zaniku procesów biologicznych samooczyszczania wód.

Aktualny stan wiedzy nie jest wystarczający do kompleksowego opisu tych zjawisk. Proponowane modele matematyczne opisujące te procesy – w postaci układów równań różniczkowych z odpowiednimi warunkami początkowymi i brzegowymi – zawierają szereg założeń upraszczających.

Rozwiązując numerycznie, w oparciu o istniejące procedury obliczeniowe, odpowiednie układy równań różniczkowych opisujących przyjęty model fizyczny charakteryzujący badany układ, otrzymuje się teoretycznie zależności opisujące rozpływ, w tym czasoprzestrzenne rozkłady zanieczyszczeń w rzece lub zbiorniku wodnym. Uzyskiwane drogą obliczeń numerycznych wyniki często wymagają jednakże weryfikacji doświadczalnej. Weryfikacja modelu polega na badaniu w terenie procesów towarzyszących transportowi znacznika (aktywnego lub pasywnego) będącego odpowiednikiem zanieczyszczenia.

Prace badawcze mające na celu opis procesów transportu w naturalnych wodach powierzchniowych prowadzono już w latach 60-tych. Powstały wtedy podwaliny metod znacznikowych, które wykorzystywano do pomiarów charakterystyk dynamicznych rzek, rozpływu w jeziorach, procesów transportu zanieczyszczeń [1]. Szybki rozwój tych prac w latach 70-tych i 80-tych, prowadzonych zarówno na modelach laboratoryjnych jak i w warunkach terenowych z wykorzystaniem znaczników promieniotwórczych, barwników oraz znaczników fluorescencyjnych doprowadził do znaczącego rozwoju metod modelowania matematycznego. Burzliwy rozwój dziedziny badań znacznikowych w hydrologii został ograniczony pod koniec lat 80-tych i praktycznie całkowicie zahamowany pod koniec lat 90-tych ze względu na brak zezwoleń na wprowadzanie do środowiska znaczników promieniotwórczych i poważne ograniczenia dla znaczników innego typu (np. znaczniki

8

fluorescencyjne) wprowadzanych z zewnątrz do ekosystemu. Hydrologia utraciła zatem podstawowe narzędzie (metody znacznikowe) niezbędne do weryfikacji i rozwoju teorii.

Równocześnie z w/w badaniami znacznikowymi rozwijała się i rozwija hydrologia izotopowa związana z badaniami obiegu wody w przyrodzie. Procesy naturalnego frakcjonowania (parowanie, kondensacja, absorpcja, desorpcja itp.) powodują różnicowanie składu izotopowego wód co daje możliwość prowadzenia różnego typu badań w dziedzinie klimatologii, hydrogeologii, hydrologii i ochrony środowiska. Dziedziny te rozwijają się burzliwie od chwili uzyskania znacznego postępu w budowie aparatury i automatyzacji pomiarów spektrometrii masowej stosunków izotopowych (IRMS – Isotope Ratio Mass Spectrometry).

W pracy przedstawiono możliwość wykorzystania pomiarów IRMS próbek wody pobieranych w wybranych punktach lub przekrojach akwenu wodnego do oceny procesów dyspersji i mieszania się wód pochodzących z różnych zlewni.

4. METODYKA BADAŃ

4.1. Oznaczania stosunków izotopowych ¹⁸O/¹⁶O i D/H próbek wody.

Cząstka wody zbudowana jest z dwu pierwiastków, wodoru i tlenu, a każdy z tych pierwiastków posiada kilka odmian izotopowych o różnej masie atomowej.

Wodór posiada dwie stabilne odmiany izotopowe: ¹H i ²H (deuter) i jedną niestabilną, promieniotwórczą 3H (tryt). Tlen posiada trzy stabilne odmiany ¹⁶O, ¹⁷O i ¹⁸O oraz kilka promieniotwórczych (4), ale o krótkim, sekundowym czasie półtrwania.

Ze względu na występowanie i łatwość ich pomiaru, w badaniach hydrologicznych wykorzystywane są do pomiarów izotopy najbardziej rozpowszechnione, których stężenia są wyrażone poprzez ich wzajemny stosunek ilościowy [2]. W celu pełnej unifikacji i pewnego zobiektywizowania wyników, ostateczną zawartość mierzonego izotopu wyraża się względem standardu międzynarodowego - dla tlenu i wodoru w wodzie tym standardem jest VSMOW (ang. Vienna Standard Mean Ocean Water).

Skład izotopowy wodoru w próbce wyrażony jest przez równanie:

9

$$\delta_{VSMOW}^{2} H \equiv \delta_{VSMOW}^{2} H / {}^{1} H = \left[\frac{R_{pr}}{R_{VSMOW}} - 1\right] * 1000$$
 [‰]

gdzie:

 R_{pr} - stosunek izotopu wodoru ²H do izotopu ¹H w zmierzonej próbce R_{VSMOW} - stosunek izotopu wodoru ²H do izotopu ¹H w standardzie VSMOW = 0,0001558

Skład izotopowy tlenu jest wyrażony odpowiednio przez:

$$\delta_{VSMOW}^{18} O \equiv \delta_{VSMOW}^{18} O / {}^{16} O = \left[\frac{R_{pr}}{R_{VSMOW}} - 1\right] * 1000$$
 [%]

gdzie:

 R_{pr} - stosunek izotopów tlenu ¹⁸O do tlenu ¹⁶O w zmierzonej próbce R_{VSMOW} - stosunek izotopów tlenu ¹⁸O do tlenu ¹⁶O w standardzie VSMOW = 0,0020052

Pomiar składu izotopowego wody oddzielnie dla tlenu i oddzielnie dla wodoru odbywa się dwoma różnymi metodami w oparciu o spektrometrię masową stosunków izotopowych (IRMS ang. Isotope Ratio Mass Spectrometry). W chwili obecnej obie te metody mogą być prowadzone w sposób automatyczny, on-line: na liniach preparatywnych połączonych ze spektrometrem masowym gdzie pobór prób odbywa się przez próbnik automatyczny, a gaz transportowany jest przez układ zaworów pneumatycznych sterowanych przez system komputerowy.

4.1.1. Preparatyka wodoru.

Preparatykę wodoru [3] przeprowadza się w urządzeniu H/Device (Thermofinnigan, Niemcy), które połączone jest z spektrometrem masowym.

Próbka wody przeznaczona do analizy na skład izotopowy wodoru pobierana jest przez strzykawkę w sposób automatyczny i dozowana w ilości 0,5 μl do reaktora kwarcowego wypełnionego proszkiem metalicznego chromu o temperaturze ok. 850°C. Przed wprowadzeniem wody do reaktora w reaktorze panuje próżnia. Woda w reaktorze podlega reakcji z gorącym, metalicznym chromem:

 $3H_2O + 2Cr \rightarrow Cr_2O_3 + 3H_2$

Rys.1. Preparatyka wodoru z próbki wody przy użyciu metalicznego chromu.

Otrzymany w wyniku reakcji wodór transportowany jest przez system zaworów do spektrometru masowego gdzie po wprowadzeniu do jego źródła jonów i zjonizowaniu, poddawany jest analizie masowej w celu określenia stosunku izotopów wodoru o masie 2 do izotopu o masie 1. Naprzemiennie z wodorem pochodzącym z badanej próbki mierzony jest wodór standardu roboczego (jako gaz odniesienia) o znanym składzie izotopowym. Na podstawie pomierzonych stosunków izotopowych w próbce i w standardzie roboczym, zostaje wyznaczony ostateczny wynik pomiaru przedstawiany w postaci liczby δ^2 H. Posiadany zestaw pomiarowy umożliwia wykonywanie pomiarów z precyzją ok. 0.1 ‰.

4.1.2. Preparatyka tlenu.

Pomiar składu izotopowego tlenu [4] odbywa się w ditlenku węgla, który doprowadza się do stanu równowagi izotopowej z tlenem w badanej próbce wody. Procedura preparatyki przedstawia się następująco. Fiolkę szklaną napełnia się mieszaniną helu z ditlenkiem węgla o koncentracji ok. 0.1% CO₂ i zakręca się szczelnie. Przez membranę w korku, za pomocą

strzykawki do fiolki wprowadzana jest próbka wody przeznaczonej do pomiaru w ilości 0.5 ml. Cała przygotowana partia naczynek przeznaczonych do oznaczeń umieszczana jest w termostatowanej tacy o temp. 30°C na okres powyżej 15 godzin (czas wymagany do ustalenia się równowagi). Po ustaleniu się równowagi, poprzez automatyczny próbnik, po kolei do każdego naczynia, wprowadzana jest igła dwudrożna zaopatrzona w dwie kapilary. Za pomocą jednej kapilary do naczynia wtłaczany jest hel, który miesza się z mieszaniną równowagową w fiolce, a następnie opuszcza ją poprzez drugą kapilarę i wędruje do urządzenia Gasbench II (Thermofinnigan, Niemcy), w którym transportowany gaz poddawany jest osuszaniu oraz separacji ditlenku węgla w kapilarnej kolumnie chromatograficznej (rys.2). Wydzielony pik CO₂ wprowadzany jest następnie do źródła jonów spektrometru masowego, gdzie analizowany jest skład izotopowy tlenu.

Rys. 2. Schemat oznaczania składu izotopowego tlenu w wodzie.

Jako gaz odniesienia stosowany jest ditlenek węgla z butli o znanym składzie izotopowym. Dla jednej mierzonej próbki wody pomiar składu izotopowego tlenu w próbce gazowej odbywa się 10-krotnie. Wyznaczana z pomiarów wartość składu izotopowego tlenu w CO₂ przeliczana jest następnie na skład izotopowy tlenu w wodzie (mierzonej próbki) będącej w równowadze izotopowej z mierzonym gazem. Obliczeń dokonuje się w oparciu o znajomość współczynnika α równowagi izotopowej tlenu w obu fazach dla danej temperatury. Prowadzone tą metodą pomiary pozwalają na oznaczenie δ^{18} O z dokładnością do 0.02 ‰. Porównując przebieg oznaczenia składu izotopowego wodoru oraz tlenu w wodzie tzn. czasochłonności przygotowania pojedynczej próbki oraz szybkość wykonania pomiaru stwierdzono, że dla dużej ilości prób wygodniejszym narzędziem badawczym będzie skład izotopowy wodoru w wodzie. Ostatecznym argumentem potwierdzającym trafność tego wyboru było to, że zgodnie z empiryczna formułą dla wód pochodzących z opadów meteorologicznych (δ^2 H=8 δ^{18} O + 10) zmianie wartości δ^{18} O o 1 ‰ towarzyszy zmiana wartości δ^2 H o 8 ‰, co powoduje, że mimo 5 krotnej większej dokładności pomiarów tlenu mamy ostatecznie korzystniejszy stosunek przyrostu wartości mierzonej do dokładności pomiaru dla oznaczeń wodoru.

4.2. Metoda znacznikowa badania rozpływu zanieczyszczeń w rzekach.

Zagadnienie rozpływu zanieczyszczeń w rzekach jest szczególnie istotnym z punktu widzenia ochrony środowiska wodnego. W ciekach wodnych mamy do czynienia z ciągłymi powolnymi zrzutami wód powierzchniowych (niosących z sobą określony ładunek zanieczyszczeń np. nawozów sztucznych) jak również z nagłymi zrzutami zanieczyszczeń np. w rezultacie wypadków. Znajomość parametrów cieku opisujących czas retencji, zdolność dyspersji zanieczyszczeń itp. konieczna jest dla prognozowania bezpieczeństwa ujęć wody oraz innych działań związanych z gospodarką wodną danego cieku. W/w sytuacja powoduje, że od dłuższego czasu prowadzone są teoretyczne i eksperymentalne prace – zarówno laboratoryjne jak i polowe – dotyczące rozprzestrzeniania się zanieczyszczeń głównie w rzekach. W badaniach tych wykorzystywane są metody znacznikowe, w tym również radioznacznikowe.

Z punktu widzenia hydrologii badanej rzeki następujące parametry mogą wpływać na intensywność mieszania się wód: natężenie przepływu, głębokość cieku, nachylenie dna, kształt przekroju poprzecznego, geometria rzeki (odstępstwo od prostoliniowości przepływu), materiał rumowiska dennego (chropowatość) i in. [5]

Występowanie w rzece zakoli, krzywizny przepływu (siły odśrodkowe) oraz sił Coriolisa powodują powstawanie w rzece skomplikowanej makrostruktury poprzecznych prądów cyrkulacyjnych powodujących naturalne mieszanie się wód.

Geometria rzek oraz obserwowane w nich wartości średnich prędkości przepływu wody powodują, że w rzekach występuje praktycznie turbulentny ruch wody, co powoduje

dodatkowe znaczne mieszanie cieczy.

Wszystkie w/w czynniki powodują, że każda rzeka charakteryzuje się, na wybranym odcinku przepływu, specyficznymi dla niej wartościami współczynników dyspersji wzdłużnej, poprzecznej i po głębokości opisującymi proces mieszania się wód a tym samym proces mieszania zanieczyszczeń rozpuszczonych w wodzie.

W IChTJ od wielu lat prowadzono badania znacznikowe rozpływu zanieczyszczeń w rzekach w różnych warunkach hydrogeologicznych (rzeki nizinne, meandrujące itp.) oraz dla znacząco różniących się natężeń przepływu wód (Wisła, Narew, Wkra) [6-10]. Badania prowadzono zarówno z wykorzystaniem znaczników promieniotwórczych jak i fluorescencyjnych (Rodamina – B, Rodamina WC, Fluoresceina i in.).

Metodologia badań znacznikowych przedstawiona jest w wielu monografiach w szczególności dotyczących inżynierii procesowej np.[11]. Różne aspekty zastosowania tej metody do badania rozpływu zanieczyszczeń w rzekach szczegółowo omówiono w pracach [12-13]. W niniejszym sprawozdaniu przedstawione zostaną wybrane elementy metody znacznikowej, które zostały wykorzystane w realizacji badań terenowych.

4.2.1. Wybór znacznika, dozowanie, aparatura pomiarowa.

Praktyka stosowania technik znacznikowych w badaniach procesów zachodzących w przepływie cieczy polega na wprowadzeniu do przepływającego strumienia substancji zachowującej się identycznie ze znakowaną fazą, lecz posiadającą określoną cechę, wyróżniającą ją z otoczenia, umożliwiającą detekcję znacznika czyli rejestrację jego stężenia w funkcji czasu i położenia. Znacznik nie powinien podlegać sorpcji na osadach dennych i zawiesinach.

W badaniach procesów zachodzących w naturalnych odbiornikach wodnych stosowane są znaczniki promieniotwórcze (szczególnie dla wód mętnych, brudnych, z dużą ilością cząstek zawieszonych) i fluorescencyjne. Wybór tych znaczników podyktowany jest ich zadowalającą trwałością w środowisku wodnym i wysoką czułością detekcji.

Względy prawne nie pozwoliły na zastosowanie w badaniach znaczników promieniotwórczych (wodny roztwór KBr znakowany radioizotopem Br-82).

Zdecydowano się na zastosowanie znaczników fluorescencyjnych. Prowadzone wcześniej w IChTJ testy własne oraz doświadczenie innych autorów [14] wykazują, że straty

właściwości fluorescencyjnych pod wpływem światła oraz straty znacznika w wyniku adsorpcji na zawiesinach i osadach dennych, w przypadku rodaminy i uraniny jako znaczników, nie mają praktycznego znaczenia przy estymowaniu procesów mieszania w rzece, gdzie nie jest konieczne sporządzenie bilansu masy znacznika.

Uwzględniając powyższe w badaniach znacznikowych jako znacznika cieczy użyto Rodaminy B.

Znacznikowe badania transportu zanieczyszczeń w wodach powierzchniowych polegają na dozowaniu znacznika w określonym punkcie naturalnego odbiornika i rejestracji jego stężenia w funkcji czasu i współrzędnych przestrzennych. Spośród dwóch możliwych technik dozowania znacznika do fazy wodnej – metody ciągłej lub impulsowej – wybrano metodę impulsową jako prostszą i nie wymagającą znacznych ilości znacznika.

Badania terenowe wymagają rejestracji stężenia znacznika w wielu punktach naturalnego odbiornika w związku z czym w pracach terenowych stosuje się ruchome stanowiska pomiarowe instalowane na łodziach. Do detekcji znaczników fluorescencyjnych używano fluorymetru Turner Design wyposażonego w zestaw filtrów optycznych i przepływową kuwetę pomiarową. Fluorymetr prowadzi ciągły pomiar stężenia znacznika w wodzie pompowanej przez kuwetę za pomocą pompy zanurzeniowej. Schemat ruchomego stanowiska pomiarowego przedstawiono na rys.3.

Rys.3. Schemat ruchomego stanowiska pomiarowego do detekcji stężenia znaczników w rzekach.

Wskazania fluorymetru rejestrowane są na taśmie rejestratora lub w pamięci komputera. Równolegle do zapisów fluorymetru prowadzone są z wykorzystaniem systemu GPS-Garmin (Global Position System) pomiary położenia łodzi. Dokładność lokalizacji łodzi wynosi 5 metrów.

4.2.2. Technika pomiarowa.

Technika pomiarowa stosowana w pracach doświadczalnych prowadzonych na dużych rzekach wynika ze specyfiki transportu zanieczyszczeń i procesów mieszania zachodzących między punktem dozowania (zrzutu zanieczyszczeń) a punktem ujednorodnienia się stężenia zanieczyszczeń w przekroju poprzecznym rzeki. W związku z tym eksperyment znacznikowy polega na rejestrowaniu rozkładów stężenia znacznika wzdłuż szerokości rzeki w różnych odległościach od punktu dozowania. Podczas pomiarów wartości współczynników dyspersji punkt dozowania umieszcza się zwykle w nurcie rzeki (zazwyczaj w pobliżu jej środka).

Pomiary rozkładów stężeń znacznika po szerokości rzeki wykonywane są w profilach pomiarowych wyznaczonych przy pomocy dwu lub więcej pław w różnych odległościach poniżej punktu dozowania.

Przyjmuje się układ współrzędnych przestrzennych o osiach:

- o,x współrzędna długości (wzdłuż rzeki)
- o,y współrzędna szerokości (wzdłuż profilu pomiarowego)

o,z - współrzędna głębokości

oraz współrzędna czasowa o,t - czas od chwili dozowania.

Podczas przechodzenia przez dany profil plamy znacznika łódź porusza się po profilu. Podczas każdego przejścia łodzi rejestrowany jest rozkład stężenia znacznika wzdłuż szerokości rzeki, z jednoczesną rejestracją czasu od chwili dozowania i położenia łodzi.

Pomiar na danym profilu trwa do czasu opuszczenia profilu przez znacznik. Procedura ta jest powtarzana w każdym profilu pomiarowym. W zależności od szybkości przepływu wody oraz intensywności procesów mieszania udaje się obmierzyć jedną łodzią do 5 profili pomiarowych. Schemat pomiaru przedstawiono na rys.4.

Rys.4. Schemat pomiaru znacznikowego. A – profile pomiarowe, B – kursy łodzi pomiarowej.

Pomierzone rozkłady stężenia znacznika po szerokości rzeki są następnie próbkowane

ze stałym krokiem Δy . Wynikiem pomiaru na określonym profilu jest macierz (1)

gdzie:

c- stężenie znacznika,

i = 1, ...N;

j = 1, ...K;

W macierzy (1) wiersze są dyskretnymi rozkładami stężenia znacznika wzdłuż szerokości rzeki. Kolumny macierzy są wybranymi punktami rozkładów stężenia znacznika w czasie w określonym punkcie y_i.

Na podstawie elementów macierz (1) wyznaczane są współczynniki dyspersji wzdłużnej, poprzecznej oraz względem czasu.

4.3. Model adwekcyjno-dyspersyjny rozpływu zanieczyszczeń w rzece.

W Polsce, od wielu lat, badaniami i modelowaniem rozpływów wód powierzchniowych w różnych warunkach hydrologicznych i geograficznych zajmują się głównie dwa ośrodki: Instytut Meteorologii i Gospodarki Wodnej w Warszawie oraz Instytut Geofizyki PAN. W trakcie realizacji niniejszego grantu współpracowano z IMGW w zakresie opisu charakterystyk hydrologicznych i hydraulicznych badanych obiektów. W latach wcześniejszych współpracowano z IG-PAN w zakresie testowania metodami znacznikowymi modeli rozpływu wód w rzekach [7, 10].

Opis stosowanych w badaniach rozpływów zanieczyszczeń w rzekach modeli wraz z uzasadnieniem stosowanych uproszczeń i założeń znaleźć można w szeregu monografiach np. [14-17].

Najogólniej równanie dyfuzji turbulentnej opisujące rozpływ znacznika pasywnego w rzece dla przypadku trójwymiarowego 3D przedstawić można w układzie współrzędnych kartezjańskich w postaci:

$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D_x \frac{\partial c}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_y \frac{\partial c}{\partial y} \right) + \frac{\partial}{\partial z} \left(D_z \frac{\partial c}{\partial z} \right) - \left(u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} + w \frac{\partial c}{\partial z} \right)$$
(2)

gdzie:

c- stężenie znacznika,

t - czas,

D_x, D_y, D_z – główne składowe tensora dyfuzji turbulentnej,

u, v, w – składowe wektora prędkości wody.

W praktyce, w trakcie modelowania matematycznego rozpływu wprowadza się szereg uproszczeń i założeń. Przyjmuje się [5], że jeśli szerokość rzeki B przekracza ponad 30-krotnie średnią głębokość T_m to promień hydrauliczny przekroju rzeki $R \approx T_m$: gdzie promień hydrauliczny R = F/P (F – pole przekroju czynnego rzeki, P – obwód zwilżany) a głębokość średnia $T_m = F/B$.

Ogólne rozważania dotyczące hydrologii rzek [15] wskazują, że odległość od punktu dozowania L_{mu} przekroju, w którym występuje pełne wymieszanie znacznika po głębokości rzeki wynosi $L_{mn} \approx 50 \text{ T}_m$ tj dla głębokości rzeki ok. 4 m odległość ta wynosi ok.200 m.

W badaniach znacznikowych pierwszy mierzony profil poprzeczny rzeki znajduje się zazwyczaj znacznie dalej od punktu dozowania.

Dla rzek o regularnych przekrojach poprzecznych nieduże zmiany głębokości mogą zostać pominięte, jak również poprzeczne składowe prędkości v.

Uśrednienie przepływu po głębokości rzeki oraz przyjęcie v = 0 upraszcza równanie (2) do postaci dwuwymiarowej:

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = D_x \frac{\partial^2 c}{\partial x^2} + D_y \frac{\partial^2 c}{\partial y^2}$$
(3)

Z warunkiem początkowym dla stężenia

$$c(0,0,t) = \frac{M}{T_m} \partial(t)$$

Dla obszaru przepływu, w którym można zaniechać wpływ brzegów rzeki na rozpływ zanieczyszczeń, rozwiązanie równania (3) dla znacznika pasywnego ma postać:

$$c = \frac{M}{4\pi T_m t \sqrt{D_x D_y}} \exp\left\{-\frac{(x - ut)^2}{4D_x t} - \frac{y^2}{4D_y t}\right\}$$
(4)

Analiza równania (4) pozwala na wyznaczenie związków zachodzących między współczynnikami dyspersji D_i i odpowiednimi zmianami czasowymi wariancji rozkładu stężeń σ_i^2 (wyliczonymi z macierzy pomiarów doświadczalnych (1)). Zachodzi zależność:

$$\frac{d}{dt}\sigma_i^2 = 2D_i \tag{5}$$

Porównanie wyliczonych z badań znacznikowych i modelowania dyspersji wzdłużnej D_x i poprzecznej D_y znacznika w rzece z danymi uzyskanymi z pomiarów stosunków izotopowych próbek wody pobieranych w odpowiednich przekrojach rzeki pozwoli na ocenę komplementarności obu stosowanych technik pomiarowych.

5. OPIS UZYSKANYCH WYNIKÓW.

Celem projektu było porównanie kilku stosowanych dotychczas technik wyznaczania dyspersji zanieczyszczeń w rzekach takich jak:

- metoda radioznacznikowa;
- metoda znaczników fluorescencyjnych;
- metoda modelowania przepływu i numerycznej oceny współczynników dyspersji;

z proponowaną do zastosowania metodyką bazującą na określeniu parametrów mieszania się wód w oparciu o pomiary zmian stosunków izotopowych wody w badanym przepływie.

Metoda ta może być stosowana w układach wodnych, w których w sposób naturalny występują różnice w stosunkach izotopowych wód.

Dla przeprowadzenia badań terenowych wybrano dwa akweny wodne:

- I. Układ rzek Narew-Bug i Zalew Zegrzyński jako przykład mieszania się wód dwóch dużych rzek w zbiorniku wodnym;
- II. Układ rzek BugoNarew-Wisła jako przykład mieszania się wód w układzie rzeka główna (Wisła) dopływ (BugoNarew).

Wstępne badania prowadzone w 2003 r. wykazały, że różnice składu izotopowego wody w Narwi i Bugu, w przekrojach leżących powyżej miejsca połączenia, są wystarczające do badania procesów mieszania ich wód w rejonie Zalewu Zegrzyńskiego i wynoszą dla sezonu

pomiarowego (maj – październik) $\Delta_{sr}\delta D \approx 5,0 \pm 0,5; \Delta_{sr}\delta^{18}O \approx 0,5 \pm 0,1$. Ze względu na znacząco lepszy stosunek wartości $\Delta\delta D$ do błędu pomiaru (w systemie pomiarowym IRMS – D/H Isotope Ratio Mass Spectrometry/H-Device) w dalszej realizacji projektu badano jedynie rozkłady δD traktując ten właśnie parametr jako znacznik procesów mieszania [18].

W latach 2004 – 2006 prowadzono systematycznie (raz w miesiącu) pomiary stosunku izotopowego wodoru w próbkach wody pobieranych w wybranych punktach Bugu (most w Wyszkowie), Narwi (most w Wierzbicy) i Wisły (most w Warszawie). Zbiorcze zestawienie wyników pomiarów przedstawiono na rys.5.

Rys.5. Zmiany składu izotopowego wodoru w rzekach Narew, Bug, Wisła - lata 2004 - 2006

Uzyskane dane potwierdzają możliwość wykorzystania – w określonym okresie roku – parametru δD jako wewnętrznego naturalnego znacznika do badania procesów mieszania się wód.

5.1. Badania układu wodnego Narew-Bug-Zalew Zegrzyński

Badania terenowe akwenu wodnego Narew-Bug-Zalew Zegrzyński przeprowadzono w okresie czerwiec – październik 2004 r. oraz wyrywkowo w lipcu 2005 r. W ramach projektu zespół badawczy Instytutu Meteorologii i Gospodarki Wodnej w Warszawie pod kierownictwem dr Jerzego Szkutnickiego opracował charakterystykę hydrologiczną i hydrauliczną koryta rzecznego w wybranych przekrojach pomiarowych Narwi, Bugu i Zalewu Zegrzyńskiego. Wyniki pomiarów IMGW przedstawiono w Załączniku I.

Mapę badanego odcinka rzek i Zalewu z zaznaczeniem profili pomiarowych, na których prowadzono oznaczanie charakterystyk hydrologicznych oraz składu izotopowego pobieranych próbek wody przedstawiono na rys.6.

Rys.6. Mapa akwenu wodnego Narew-Bug-Zalew Zegrzyński, 1, 2, 3, 4, 5 – profile pomiarowe.

W celu sprawdzenia stałości składu izotopowego wody w punktach pomiarowych na Narwi (most w Wierzbicy) i Bugu (most w Wyszkowie) pobrano, w przekroju poprzecznym oraz po głębokości rzeki po 10 próbek z powierzchni wody wzdłuż profilu (most)oraz w trzech profilach pionowych (po głębokości) zlokalizowanych w osi oraz ¼ i ¾ szerokości rzek. Dla próbek pobranych zarówno z Narwi jak i Bugu nie stwierdzono różnic δD przekraczających błąd pomiarowy tj. 0,5.

W trakcie każdej sesji pomiarowej pobierano próbki wody z Bugu i Narwi oraz próbki wody z profili pomiarowych I – V usytuowanych po szerokości Zalewu.

Dla każdej z próbek oznaczano wartości δD_i stosunku izotopowego deuteru do wodoru. Próbki pobierano z odstępem ok. 100 m na głębokości 1,5 m od powierzchni wody.

Dla każdego profilu pomiarowego obliczano współczynnik zmieszania wód M z zależności

$$M = 1 - \left[\frac{1}{N-1} \sum_{i=1}^{N} \left(1 - \frac{c_i}{\overline{c}}\right)^2\right]^{\frac{1}{2}}$$
(6)

1

gdzie:

M – współczynnik zmieszania (równy 1 przy pełnym wymieszaniu wód w danym profilu); i = 1,...N numery próbek;

- $c_i = \Delta \delta D_0$ $\Delta \delta D_i$
- *c* wartość średnia c_i dla danego profilu.

$$\Delta \delta \mathbf{D}_0 = \left| \delta D_B - \delta D_N \right|$$

 $\delta D_B i \delta D_N$ oznaczają stosunki izotopowe deuteru i wodoru odpowiednio dla Bugu i Narwi.

$$\Delta \delta \mathbf{D}_{\mathrm{i}} = \left| \delta D_{N} - \delta D_{i} \right|$$

Wartość średnia c dla danej sesji pomiarowej może być wyznaczona z bilansu wody w układzie rzecznym z zależności:

$$\overline{c} = \frac{c_B \cdot Q_B + c_N \cdot Q_N}{Q_B + Q_N} \tag{7}$$

gdzie:

c_B i c_N wartości c dla Bugu i Narwi w danym eksperymencie,

Q_B i Q_N natężenia przepływu wody w Bugu i Narwi.

Natężenia przepływu rzek w trakcie sesji pomiarowych przedstawiono w Tablicy 1.

Data pomiaru	Narew m ³ /s	Bug m ³ /s
08.07.2004	81,3	63,8
07.09.2004	77,5	77,8
21.10.2004	93,7	71,5
13.09.2005	56	60

Tablica 1. Natężenie przepływu (w profilach powyżej połączenia rzek)

Zarejestrowane rozkłady stosunków deuteru do wodoru w profilach pomiarowych dla kolejnych sesji badawczych przedstawiono na rys.7.

Rys.7. Rozkłady stosunków izotopowych deuteru do wodoru w przekrojach pomiarowych dla rzek Narew, Bug i Zalewu Zegrzyńskiego.

Zbiorcze zestawienie obliczonych współczynników zmieszania wód w poszczególnych sesjach badawczych oraz profilach pomiarowych przedstawiono w Tablicy 2 oraz na rys.8.

Tablica 2. Zestawienie współczynników zmieszania wód w poszczególnych sesjach badawczych oraz profilach pomiarowych dla rzek Bug i Narew.

	Pomiar 08.07.2004	Pomiar 07.09.2004	Pomiar 21.10.2004	Pomiar 13.09.2005		
	Współczynnik mieszania M					
Profil I	0,15	0,25	0,54	0,35		
Profil II	0,56	0,27	0,67	0,42		
Profil III	0,79	0,71	0,77	0,56		
Profil IV	0,75	0,76	0,90	0,61		
Profil V	0,70	0,87	0,94	0,78		

Rys.8. Zmiany współczynnika zmieszania wód Bugu i Narwi w funkcji odległości od punktu dozowania znacznika.

Analiza uzyskanych wyników wskazuje, że procesy mieszania poprzecznego wód obydwu rzek zachodzą głównie w wąskim odcinku Zalewu Zegrzyńskiego na długości ok. 8 km od miejsca połączenia rzek.

W przekroju (profilu) nr 3 (Białobrzegi – Zegrze) obserwuje się już niewielkie różnice wartości δD w całym przekroju pomiarowym a współczynniki wymieszania osiągają wartości 0,7 -0,8. Wyniki przeprowadzonych badań terenowych wraz z ich omówieniem przedstawiono w pracach [18, 19]

5.1.1 Symulacje numeryczne przepływu wody w Zalewie Zegrzyńskim.

Ze względu na fakt, że nie uzyskano zgody na przeprowadzanie eksperymentów znacznikowych w Zalewie Zegrzyńskim (z uwagi na ujęcie wody pitnej) przeprowadzono obliczenia struktury przepływu wody w wybranym fragmencie Zalewu z wykorzystaniem metod obliczeniowej mechaniki płynów – CFD (Computational Fluid Dynamics).

W oparciu o kody obliczeniowe oprogramowania FLUENT, dla akwenu wodnego zawartego między połączeniem rzek Bugu i Narwi a profilem pomiarowym nr 2 na Zalewie, przeprowadzono obliczenia przepływu płaskiego (dwuwymiarowego – 2D) dla realnych natężeń przepływu rzek. Rozwiązano stosowny układ równań Navier'a – Stokesa i równania ciągłości wykorzystując standardową procedurę k-ε dla domknięcia układu równań dla przepływu turbulentnego. Ilość komórek obliczeniowych dla wybranego akwenu wynosiła 36 415, wymiary komórek 5,5 – 19,6 m^{2.} Brzegi akwenu modelowano wykorzystując oprogramowanie Gambit.

Dla uzyskanej struktury przepływu, wykorzystując metodykę Lagrange'a [20] badania trajektorii oraz czasów przebywania w danym akwenie bezmasowych cząstek cieczy, obliczono numeryczne rozkłady czasów przebywania wód Bugu i Narwi w badanym akwenie wodnym.

Wyznaczone rozkłady czasów przebywania (RCP) wód Bugu i Narwi przedstawiono na rys.9.

Bug

BugoNarew

	Bug	Narew	BugoNarew
c _{śr} [godz]	14,3	17.1	15,7
wbw [-]	0,0319	0,0041	0,0239

Rys.9. Rozkłady czasów przebywania dla rzeki Narew, Bug i BugoNarew oraz zestawienie tabelaryczne średniego czasu przebywania i wariancji bezwymiarowej wyznaczonej przy użyciu kodów obliczeniowej mechaniki płynów CFD.

Charakter uzyskanych rozkładów czasów przebywania (RTD) wody w wybranym odcinku Zalewu Zegrzyńskiego wskazuje na zbliżony do tłokowego ich przepływ z małą intensywnością procesów mieszania (małe wartości wariancji bezwymiarowych rozkładu czasów przebywania).

Przeprowadzono symulację numeryczną eksperymentu znacznikowego przypisując wodom Bugu i Narwi różne temperatury T_1 i T_2 . Wcześniejsze badania [7] pokazały, że różnica temperatur może być również z powodzeniem stosowana jako znacznik wewnętrzny opisujący intensywność procesów mieszania. Uzyskany numerycznie rozkład temperatur wody w profilu

pomiarowym II przedstawiono na rys.10.

Rys.10. Numeryczne rozkłady temperatur wody w profilu pomiarowym II.

Obliczony zgodnie z procedurą dla danego rozkładu temperatur współczynnik zmieszania wód wynosi M = 0,56. Odpowiedni współczynnik zmieszania wód dla danego profilu pomiarowego wyznaczony na podstawie pomiaru stosunków izotopowych wodoru wyniósł M = 0,55.

5.2. Badania układu wodnego BugoNarew – Wisła.

Badania terenowe akwenu wodnego BugoNarew – Wisła przeprowadzono w okresie czerwiec – lipiec 2005 r. Mapę badanego odcinka rzek, z zaznaczeniem profili pomiarowych, na którym prowadzono oznaczenia składu izotopowego pobieranych próbek wody oraz poprzeczne rozkłady stężeń znacznika przedstawiono na rys.11.

Rys.11. Mapa akwenu wodnego BugoNarew-Wisła, I, II, III, IV - profile pomiarowe

Rys.11a. Przekroje poprzeczne Wisły w profilach pomiarowych.

Natężenia przepływów rzek Wisły i BugoNarwi w okresie pomiarów oraz szerokości profilów pomiarowych i średnie głębokości przedstawiono w Tablicy 3.

Tablica 3. Zbiorcze zestawienie danych – natężenie przepływu, szerokość profilu i średnia głębokość - dla rzek Wisły i BugoNarwi.

	Wisła			BugoNarew				
Data	Natężenie		Szerokość	Średnia	Natężenie		Szerokość	Średnia
Duta	przepływu	Profil	profilu	głębokość	przepływu	Profil	profilu	głębokość
	$[m^3/s]$		[m]	[m]	$[m^{3}/s]$		[m]	[m]
)5	682	Ι	250	4,7	399	Ι	250	4,7
.20(II	210	3,1		Π	210	3,1
.06		III	210	3,1		III	210	3,1
14		IV	210	3,0		IV	210	3,1
)5	361 II III IV	Ι	250	2,7	106.2	Ι	250	2,7
.07.20(II	210	3,1		II	210	3,3
		III	210	3,1	120,3	III	210	3,3
13		IV	210	3,0		IV	210	3,0

W trakcie pierwszej sesji pomiarowej w czerwcu 2005 r. nastąpiło znaczące zwiększenie natężenia przepływu oraz podniesienie poziomu wód, związane z nagłymi obfitymi opadami, w związku z czym uzyskane dane pomiarowe nie są w pełni reprezentowane dla badanego akwenu (niestabilność warunków przepływu). W drugiej sesji pomiarowej w lipcu 2005 r. warunki pomiarów były stabilne.

W trakcie sesji pomiarowej pobierano próbki wody z BugoNarwi i Wisły (powyżej punktu połączenia rzek) oraz próbki wody z wyznaczonych profili pomiarowych usytuowanych po szerokości Wisły.

Próbki pobierano z odstępem około 50 m na głębokości 0,5 m poniżej powierzchni rzeki. Dla każdej z próbek oznaczono wartości δD_i stosunku izotopowego deuteru do wodoru. Analogicznie jak w przypadku Zalewu Zegrzyńskiego dla każdego profilu pomiarowego wyznaczono zmiany po szerokości rzeki wielkości c_i oraz obliczono odpowiednie współczynniki zmieszania wód. Zarejestrowane rozkłady stosunków deuteru do wodoru w profilach pomiarowych przedstawiono na rys.12.

Zbiorcze zestawienie obliczonych współczynników zmieszania wód w profilach pomiarowych w kolejnych sesjach badawczych przedstawiono w Tablicy 4 oraz na rys 13.

Tablica 4. Zestawienie współczynników zmieszania wód w poszczególnych sesjach badawczych oraz profilach pomiarowych dla rzek BugoNarew i Wisła.

Bugonarew – Wisła	14.06.2005 (Q	$Q = 1083 \text{ m}^3/\text{s}$	13.07.2005 (Q = 487,3 m ³ /s)		
Profile	Odległość od punktu dozowania [m]	М	Odległość od punktu dozowania [m]	М	
Profil I	497	0,1912	673	0,2604	
Profil II	1515	0,4983	1920	0,5370	
Profil III	2490	0,5204	3875	0,5566	
Profil IV	3930	0,7104	8765	0,7587	

Rys.13. Zmiany współczynnika zmieszania wód BugoNarwi i Wisły w funkcji odległości od punktu dozowania znacznika.

Wyniki przeprowadzonych badań terenowych przedstawiono w pracach [21, 22].

W warunkach stabilnego przepływu (Q $\approx 490 \text{ m}^3/\text{s}$) umiarkowane wymieszanie wód – współczynnik zmieszania M = 0,76 – zostaje osiągnięte w odległości ok. 8 – 9 km od punktu

dozowania.

W warunkach intensywnego przepływu wody ($Q \approx 1100 \text{ m}^3/\text{s}$) odległość dobrego zmieszania wód zmniejsza się do 4 km.

5.2.1. Badania znacznikowe akwenu wodnego BugoNarew – Wisła.

Badania znacznikowe akwenu wodnego BugoNarew-Wisła w rejonie Modlina przeprowadzono w lipcu 2005 r. W trakcie pomiarów przeprowadzono dwa eksperymenty znacznikowe, w trakcie których znacznik – Rodamina B – dozowana była kolejno do BugoNarwi (powyżej ujścia do Wisły) oraz do Wisły, powyżej punktu dopływu BugoNarwi – rys.11. Znaczniki dozowano impulsowo w głównym nurcie rzek.

5.2.1.1. Pomiar rozpływu wód BugoNarwi w Wiśle

Po zadozowaniu znacznika do głównego nurtu BugoNarwi rozpoczynano pomiary rozkładu czasowo-przestrzennego znacznika w wybranych profilach pomiarowych I, II, III, IV. Ze względów technicznych zarejestrowano plamy przepływu znacznika w przekrojach I, III i IV.

W tablicach 5, 6, 7 przedstawiono zarejestrowane macierze rozkładu stężenia znacznika w poszczególnych trawersach łodzi pomiarowej w danym przekroju poprzecznym rzeki. Dla każdego przelotu łodzi wyznaczono położenie i czas od momentu dozowania, średnie stężenia znacznika y_{śr} oraz obliczono wariancję rozkładu poprzecznego stężenia znacznika σ_y^2 [m²].

W oparciu o wyznaczone rozkłady przestrzenne stężenie znacznika, określono kształt plamy przepływającego znacznika w danym profilu pomiarowym z zaznaczeniem linii izostężenia. Wyniki dla profili pomiarowych I, III, IV przedstawiono na rys.14.

PROFIL I

PROFIL III

PROFIL IV

Rys.14. Wyznaczony kształt plamy przepływającego znacznika w danym profilu pomiarowym z zaznaczeniem linii izostężenia dla dozowania na BugoNarwi.

Dla każdego profilu pomiarowego wyznaczono przelot łodzi, w którym obserwowano maksymalne stężenie znacznika dla danej plamy oraz określono odpowiadającą mu wariancję rozkładu przestrzennego znacznika σ_y^2 i czas od momentu dozowania. Odpowiednie wartości przedstawiono w Tablicy 8.

Tablica 8. Wartości maksymalne stężenia znacznika dla danej plamy oraz określone odpowiadające mu wariancje rozkładu przestrzennego znacznika σ_y^2 i czas od momentu dozowania dla każdego profilu pomiarowego.

	Profil I	Profil III	Profil IV
c _{max}	578	129	55
$\sigma_y^2 [m^2]$	640,3	846,93	2608,8
t _{max} [s]	2234	7156	14358

Dla każdego profilu pomiarowego wyznaczono krzywe zmienności maksimum stężenia znacznika w funkcji czasu

$$c_{imax} = f(t)$$

Wyniki przedstawiono na rys.15.

Rys.15. Krzywe zmienności maksimum stężenia znacznika w funkcji czasu dla poszczególnych profili pomiarowych

Dla każdej z krzywych obliczono wariancję rozkładu czasów przepływu znacznika przez dany profil pomiarowy σ_t^2 [s²] (po długości rzeki). Obliczone wartości wynoszą odpowiednio:

dla profilu I -
$$\sigma_t^2 = 97\ 297\ [s^2]$$

III - $\sigma_t^2 = 347\ 422\ [s^2]$
IV - $\sigma_t^2 = 1\ 918\ 834\ [s^2]$

W oparciu o wyznaczone dla poszczególnych profili wartości σ_y^2 , σ_t^2 oraz t_{max} obliczono współczynniki dyspersji znacznika dozowanego do BugoNarwi w badanym odcinku Wisły.

Wartości współczynników dyspersji obliczono z zależności:

dla dyspersji poprzecznej

$$D_{y} = \frac{1}{2} \frac{d\sigma_{y}^{2}}{dt} \approx \frac{1}{2} \frac{\sigma_{y,j}^{2} - \sigma_{y,i}^{2}}{t_{j} - t_{i}} \quad \text{i, j-numery profili pomiarowych}$$

t_i, czasy przejścia maksimum stężenia znacznika przez i – ty profil.

Uwzględniając zależność między odległością między profilami a czasem x = t \cdot u, gdzie

u – prędkość średnia przepływu wody, otrzymujemy dla dyspersji podłużnej.

$$D_{x} = \frac{1}{2} \frac{d\sigma_{x}^{2}}{dt} \approx \frac{1}{2} \frac{u^{2}(\sigma_{t2}^{2} - \sigma_{t1}^{2})}{t_{2} - t_{1}} = \frac{u^{3}}{2} \frac{\sigma_{t2}^{2} - \sigma_{t1}^{2}}{x_{2} - x_{1}}$$

gdzie xi - odległości profili pomiarowych od punktu dozowania.

W Tabeli 9 przedstawiono obliczone wartości współczynników dyspersji: wzdłużnej i poprzecznej

		głość od Średni czas unktu transportu [s]	,	Współczynniki dyspersji		
Nr. przekroju	Odległość od punktu dozowania [m]		Srednia prędkość	Podłużnej [m ² /s]	Poprzecznej [m ² /s]	
Ι	673	2234	0,70	24,8	0,15	
III	3875	7156	0,70	13,2	0,02	
IV	8765	14358	0,77	54,6	0,12	

Tabela 9. Obliczone wartości współczynników dyspersji: wzdłużnej i poprzecznej.

Do profilu pomiarowego I wody BugoNarwi płyną wąską rozciągniętą strugą przy prawym brzegu Wisły. Fakt ten znajduje potwierdzenie w rozkładzie stosunków izotopowych wodoru przedstawionych na rys.12. (profil I). Na profilu IV plama znacznika osiąga brzegi rzeki w związku z czym, dalsze stosowanie przyjętego modelu rozpływu plamy staje się nieuzasadnionym. Dla badanego akwenu wodnego cechą charakterystyczną jest duża zmienność współczynników dyspersji w funkcji długości rzeki. Zjawisko to może być częściowo tłumaczone zmiennym kształtem i geometrią rzeki na badanym odcinku.

5.2.1.2. Pomiar rozpływu wód Wisły poniżej ujścia BugoNarwi.

Po zadozowaniu znacznika do głównego nurtu Wisły przeprowadzono pomiary rozkładu czasoprzestrzennego znacznika w profilach pomiarowych I, II, III, IV. Plamy przepływu znacznika zarejestrowano w przekrojach poprzecznych I, II i IV (rys.16.)

W Tablicach 10, 11, 12 przedstawiono zarejestrowane w eksperymencie rozkłady stężenia znacznika w poszczególnych trawersach łodzi pomiarowej w danym profilu pomiarowym. Analogicznie do eksperymentu poprzedniego wyznaczono wartości σ_{yi}^2 , σ_{max}^2 , y_{imax} , t_{imax} , y_{max} , c_{max} .

PROFIL I

PROFIL II

PROFIL IV

Rys.16. Wyznaczony kształt plamy przepływającego znacznika w danym profilu pomiarowym z zaznaczeniem linii izostężenia.

W Tablicy 13 przedstawiono odpowiednie wartości dla profili pomiarowych I, II, IV.

Tablica 13. Wartości maksymalne stężenie znacznika dla danej plamy oraz określono odpowiadającą mu wariancję rozkładu przestrzennego znacznika σ_y^2 i czas od momentu dozowania dla każdego profilu pomiarowego.

	Profil I	Profil II	Profil IV
c _{max}	904	222	52
$\sigma_y^2 [m^2]$	492,2	785,5	2272,7
t _{max} [s]	1021	4941	12117

Wyznaczone krzywe zależności zmienności stężenia maksymalnego w funkcji czasu dla poszczególnych profili przedstawiono na rys.17.

Obliczono wariancje rozkładu czasów przepływu znacznika przez dany profil pomiarowy.

Dla profilu:

$$I - \sigma_t^2 = 104\ 633\ [s^2]$$

II - $\sigma_t^2 = 371\ 947\ [s^2]$
IV - $\sigma_t^2 = 663\ 106\ [s^2]$

W oparciu o wyznaczone wartości σ_y^2 , σ_t^2 oraz t_{max} analogicznie do poprzedniego eksperymentu, obliczono współczynniki dyspersji znacznika dozowanego do Wisły w badanym odcinku rzeki. Wyniki obliczeń przedstawiono w Tablicy 14

		egłość od Średni czas punktu transportu [s]	Średnia prędkość [m/s]	Współczynniki dyspersji		
Nr. przekroju	Odległość od punktu dozowania [m]			Podłużny [m²/s]	Poprzeczny [m ² /s]	
Ι	673	1021	0,41	26,6	0,24	
Π	1920	4941	0,7	36,4	0,03	
IV	8765	12117	0,77	7,65	0,1	

Tablica 14. Obliczone wartości współczynników dyspersji: wzdłużnej i poprzecznej.

5.2.2. Oszacowanie drogi pełnego wymieszania.

Jedną z ważnych charakterystyk rzek jest tz. długość idealnego wymieszania L_m tj. droga, na której wprowadzony do rzeki znacznik ulegnie ujednorodnieniu w przekroju poprzecznym rzeki. Brak jest dobrze teoretycznie uzasadnionych wzorów opisujących wartości L_m w funkcji parametrów przepływu. W oparciu o dane doświadczalne opracowano dla rzek różnych geometrii wzory empiryczne [1] opisujące zależności L_m od podstawowych parametrów geometrycznych cieku wodnego.

Dla dozowania znacznika w nurcie (w pobliżu środka) dla dużych rzek stosowana jest zależność

$$L_m \approx 10 \sqrt{\frac{B^3}{h}}$$

gdzie: B – szerokość rzeki, h – głębokość rzeki.

Dla Wisły w badanym odcinku przepływu B \approx 200 m oraz h \approx 4. Odpowiednia obliczona wartość L_m wynosi L_m \approx 14 km.

6. WNIOSKI

- Przy występowaniu różnicy ok. 5 ‰ lub większej w stosunkach izotopowych deuteru 2H do wodoru 1H w wodach łączących się dwóch akwenów wodnych, metoda badania stosunków izotopowych może być z powodzeniem wykorzystywana do oceny intensywności procesów mieszania się wód.
- Uzyskane metodą pomiaru stosunków izotopowych odległości dobrego mieszania się wód znajdują się w zgodzie z analogicznymi wielkościami uzyskanymi metodą znacznikową lub numeryczną symulacją eksperymentu znacznikowego.
- 3. Uzyskane w eksperymencie polowym oraz oszacowane numerycznie lub w oparciu o zależności empiryczne drogi dobrego mieszania wynoszą odpowiednio $L_m \approx 8 \text{ km}$ dla Zalewu Zegrzyńskiego oraz $L_m \approx 14 \text{ km}$ dla Wisły w rejonie Modlina.
- 4. Na podstawie eksperymentów znacznikowych obliczono współczynniki dyspersji wzdłużnej oraz poprzecznej w Wiśle. W badanym akwenie wodnym dla natężenia przepływu $Q \approx 487,3 \text{ m}^3$ /s zmieniają się one odpowiednio w przedziałach: $D_x \approx 7,65 \text{ m}^2$ /s $\div 54,6 \text{ m}^2$ /s, $D_y \approx 0,02 \text{ m}^2$ /s $\div 0,24 \text{ m}^2$ /s w zależności od profilu pomiarowego.
- 5. Dane uzyskane w eksperymencie, w którym znacznik dozowano impulsowo do wód BugoNarwi ($D_x \approx 13.2 \text{ m}^2/\text{s} \div 54.6 \text{ m}^2/\text{s}$, $D_y \approx 0.02 \text{ m}^2/\text{s} \div 0.15 \text{ m}^2/\text{s}$) wskazują, że obserwuje się niską dyspersję poprzeczną zanieczyszczeń niesionych z wodami BugoNarwi w wodach Wisły.
- 6. Dla oceny intensywności procesów mieszania się wód zachodzących w danym akwenie celowym wydaje się korzystanie z komplementarnych metod badawczych np. stosunków izotopowych SI i znacznikowych lub SI i numerycznej symulacji przepływu dla wzajemnej walidacji uzyskiwanych wyników.
- 7. Metoda pomiaru stosunków izotopowych wody pozwala na globalny opis procesów mieszania się wód w badanym akwenie tj. współczynników zmieszania w wybranych profilach drogi pełnego wymieszania itp. Metoda ta nie pozwala jednakże na określenie mechanizmu zachodzących procesów. Metoda znacznikowa, z kolei, pozwala na bardziej szczegółowy opis procesu mieszania tj. wyznaczenie lokalnych współczynników dyspersji wzdłużnej i poprzecznej, kształtu plamy znacznika itp. jednakże metoda ta jest trudniejsza eksperymentalnie i technicznie. W przypadkach akwenów, na których zlokalizowane są ujęcia wodne dodatkowym kłopotem jest fakt trudności z uzyskaniem pozwolenia na przeprowadzenie na nich eksperymentów znacznikowych.

7. LITERATURA CYTOWANA

- [1]. "Guidebook on Nuclear Techniques in Hydrology", IAEA, Vienna, (1983)
- [2]. W.A. Brand: "High precision isotope ratio monitoring techniques mass spectrometry" J. Mass Spec. (1996), 31, 225-235.
- [3]. C. Kendall, T.B. Coplen: "Multisample conversion of water to hydrogen by zinc for stable isotope determination" Anal. Chem. (1985), 57, 1437-1440.
- [4]. C.A.M. Brenninkmeijer, P. Kraft, W.G. Mook: "Oxygen isotope fractionation between CO₂ and H₂0" Isotope geoscience 1 pp. 181-190 (1983)
- [5]. L. K. Dawydow, A.A. Dmitrijew, N.G. Konkina: "Hydrologia ogólna", PWN, Warszawa, str. 285 – 319 (1979)
- [6]. S. Szpilowski, A. Owczarczyk: "Investigation on dispersion of effluents by using radiotracer method" Environmental Protection Engineering 3, pp 5 – 17, (1983)
- [7]. W. Czernuszenko, P. Lebiecki, A. Owczarczyk, S. Szpilowski: "Współczynniki wymieszania w rzekach" Wiadomości IMGW, 4, 28 (1986)
- [8]. S. Szpilowski, A. Owczarczyk, R. Wierzchnicki, R. Strzelecki: "Application of tracer method for investigation of dilution and decay of petrochemical effluent discharge into big river" Water, Air and Soil Pollution, 78 199 – 213, (1994)
- [9]. A. Owczarczyk: "The tracer study on polutants dispersion in unregulated rivers" IAEA Symposium Isotope Techniques in Water Resources Development and Management, Vienna, 10 – 14 May, IAEA – SM – 361/19P, (1999)
- [10]. P. M. Rowiński. J.J. Napiórkowski, A. Owczarczyk: "Transport of passive admixture in a multichannel river system – the Upper Narew case study. Part 2. Application of dye tracer method" Ecohydrology, Hydrobiology, Vol. 3. No 4. pp. 381 – 388, (2003)
- [11]. E. Iller: "Badania znacznikowe w inżynierii procesowej" WNT, Warszawa, (1992)
- [12]. S. Szpilowski, A. Owczarczyk, A.G. Chmielewski: "Effluent dispersion in nature water receivers (tracer examination) INCT – 2156/VI. (1993)
- [13]. E.R. Holley "Field Tests for Evaluating Hydraulic Transport Processes in Rivers" Institute of Geophysics, Polish Academy of Sciences, Monographic Volume E-2 (325) Warszawa, pp. 39 - 51, (2001)

- [14]. J. Boczar: "Estymacja parametrów modeli matematycznych rozprzestrzeniania zanieczyszczeń w rzekach". Sympozjum ISEM (Międzynarodowe Stowarzyszenie Modelowania Ekologicznego), Warszawa, (1986),
- [15]. W. Czernuszenko, P. Rowiński: "Water Quality Hazards and Dispersion of Pollutants" wyd. Springer, (2005)
- [16]. M. Mitosek; "Mechanika płynów w inżynierii i ochronie środowiska" PWN, Warszawa, str. 356 – 366, (2001)
- [17]. R. Szymkiewicz: "Modelowanie matematyczne przepływów w rzekach i kanałach" PWN, Warszawa, (2000)
- [18]. A. Owczarczyk, R. Wierzchnicki, A. Dobrowolski, J. Palige, S. Ptaszek: "Wykorzystanie naturalnie istniejących różnic w składzie izotopowym wód rzecznych jako znacznika procesów mieszania w systemach rzeka - dopływ" Konferencja Technika Jądrowa w Przemyśle, Medycynie i Ochronie Środowiska, Kraków, (2005), Mat. Konferencyjne, str. 133 – 138.
- [19]. A. Owczarczyk, R. Wierzchnicki: "Water isotope composition as a tracer for the study of mixing processes in rivers. Part I. Preliminary Studies. Annual report INCT, pp. 125 – 126, (2004)
- [20]. J. Palige, A. Dobrowolski, A. Owczarczyk, A.G. Chmielewski, S. Ptaszek: "Zastosowania obliczeniowej mechaniki płynów (CFD) do modelowania struktury przepływu w osadnikach prostokątnych" Inżynieria i Aparatura Chemiczna, Nr 4s, str. 72 – 75, (2003)
- [21]. A. Owczarczyk, R. Wierzchnicki, R. Zimnicki, A. Dobrowolski, J. Palige, S. Ptaszek: "Water isotope composition as a tracer for stusy of mixing processes in rivers. Part II. Determination of mixing degrees in the tributary – main river systems" Annual Report INCT, pp 116 – 118, (2005)
- [22]. A. Owczarczyk, R. Zimnicki, J. Palige, S. Ptaszek: "Application of water isotope composition as a tracer for studyof mixing processes in the tributary – main river systems "International Conference TRACER 4, Grenoble, France, 3 – 5 October, (2006)

61